原创作者: ahuaxuan
阅读:3402次
评论:1条
更新时间:2011-06-01
/**
*作者:张荣华
*日期:2008-11-15
**/
之前网上有很多关于django的测试,他们的测试结果都表明django在fastcgi模式下,使用线程模型要比进程模型快,而且更稳定,具体文章见:
http://irobot.blog.hexun.com/20332312_d.html
http://taoyh163.blog.163.com/blog/static/19580356200802433559850/
但是ahuaxuan根据操作系统的原理判断结果不应该是这样,理论上来讲,进程应该更快。为了证明自己的观点,于是做了以下测试。
那么在讲解我的测试方法之前,按照惯例,现来讲以下dango中fastcgi模式的一些知识点。
dango的fastcgi模式有如下几个重要参数:
相信做java的同学一看就比较明白了,很多参数和tomcat中是一样的,主要有一个host,port,socket需要讲解一下,host和port我们知道应该是成对出现的,那么socket是什么呢,其实他们都是socket,只不过,host+port模式是tcp sock,而socket是unix sock,他们都是套接字,一个是操作系统本地的,一个是网络套接字而已。
我的测试工具是apachbench,简称ab,在apache的bin目录中有这个工具。我的web服务器是lighttpd1.4。
我一共划分了4个场景,第一个场景是操作数据库的请求,第二个场景是请求缓存的场景,而且使用线程模型,第3和第4个场景都是fastcgi的进程模型。
场景一
涉及到查数据库的url,每次请求一条简单的sql语句。
python manage.py runfcgi method=threaded host=127.0.0.1 port=3033 daemonize=false
请求数 并发数 总时间
场景二
不涉及到数据的url,执行一段判断后返回(可以认为数据都放在缓存中)。
python manage.py runfcgi method=threaded host=127.0.0.1 port=3033
请求数 并发数 总时间
5000 50 7.734s
5000 25 7.545s
5000 10 7.481s
5000 100 7.776s
场景一和场景 二对比可以发现,带有数据操作的请求明显需要更多的时间,之间从缓存中拿数据,每秒中fastcgi可以处理1000个请求。
场景三
不涉及到数据的url,执行一段判断后返回(可以认为数据都放在缓存中)。使用进程模型。
python manage.py runfcgi method=prefork host=127.0.0.1 port=3033
请求数 并发数 总时间
5000 50 22 s
5000 25 25 s
5000 10 15 s
5000 100 21 s
通过场景二和三的对比,我们可以看出线程模型在默认情况下比进程模型更加快。不过根据操作系统的特性,ahuaxuan认为事有蹊跷。理论上来讲,在速度方面,进程模型不应该比线程模型慢,虽然网上有的文章确实有提到线程模型比进程模型快,不过ahuaxuan觉得他们的测试是有问题的。在研究了django的fastcgi参数之后,再根据做java的经验我发现问题可能出现在进程的创建上。于是调整参数,继续测试。
场景四
不涉及到数据的url,执行一段判断后返回(可以认为数据都放在缓存中)。将最大进程数和最小进程数调整到50。
python manage.py runfcgi method=prefork host=127.0.0.1 port=3033 daemonize=false minspare=50 maxspare=50
请求数 并发数 总时间
5000 100 8.16s
第一次:
第二次
分析,一模一样的两次请求,为什么差两倍的速度呢,根据ahuaxuan的分析,问题应该出在进程的创建上,第二次测试,由于进程已经存在,所以速度非常的快,比线程模型快了2倍不到一点。
5000 25 8.90s
5000 10 8.78s
5000 50 7.90s
对比场景三和场景四发现,在进程模式下在没有指定maxspare和minspare值的情况下,由于每次并发大的时候都动态的去创建进程,效率明显下降,5000个请求居然需要20s之多。而一旦设置了maxspare和minspare之后,只有第一次请求的时候,需要创建进程,之后经常已经存在,不需要创建,也不需要动态的消亡(maxspare和minspare值太小会导致fastcgi父进程频繁的创建和销毁子进程,非常的消耗cpu),整个应用程序的处理能力大大提高。
再对比场景二和场景四,可以发现不管是进程模式还是线程模式,每秒都能处理超过1000次的请求。而且在并发较大的情况下,进程模式效率更高。由此可见在网站访问量巨大的情况下,使用进程模型才是比较好的选择,而不是网上所说的使用线程模型。
后来为了作对比,ahuaxuan在线程模型上也加了maxspare=50,minspare=50,不过性能和没有加几乎一样,可见,这两个参数对进程模型的影响比较大。而且也可以进一步说明操作系统创建进程消耗确实大。
从这个对比结果,我们还可以得知:
1线程创建在ubuntu中的代价比进程小的多。(根据观察,在创建进程的时候,cpu上升到100%,而线程模型的cpu只有80%的样子)
2在进程已经存在的情况下,处理请求的能力,进程要比线程能力强。而且要强出1/3左右的样子
最后,贴出我的机器配置
cpu:t8100
内存:2g
硬盘:5400转的希捷
希望本文能够给对django性能有怀疑,以及对fastcgi下认为线程模型更快的同学有所帮助。
*作者:张荣华
*日期:2008-11-15
**/
之前网上有很多关于django的测试,他们的测试结果都表明django在fastcgi模式下,使用线程模型要比进程模型快,而且更稳定,具体文章见:
http://irobot.blog.hexun.com/20332312_d.html
http://taoyh163.blog.163.com/blog/static/19580356200802433559850/
但是ahuaxuan根据操作系统的原理判断结果不应该是这样,理论上来讲,进程应该更快。为了证明自己的观点,于是做了以下测试。
那么在讲解我的测试方法之前,按照惯例,现来讲以下dango中fastcgi模式的一些知识点。
dango的fastcgi模式有如下几个重要参数:
protocol=PROTOCOL fcgi, scgi, ajp, ... (default fcgi) host=HOSTNAME hostname to listen on.. port=PORTNUM port to listen on. socket=FILE UNIX socket to listen on. method=IMPL prefork or threaded (default prefork) maxrequests=NUMBER number of requests a child handles before it is killed and a new child is forked (0 = no limit). maxspare=NUMBER max number of spare processes / threads minspare=NUMBER min number of spare processes / threads. maxchildren=NUMBER hard limit number of processes / threads daemonize=BOOL whether to detach from terminal. pidfile=FILE write the spawned process-id to this file. workdir=DIRECTORY change to this directory when daemonizing. outlog=FILE write stdout to this file. errlog=FILE write stderr to this file. umask=UMASK umask to use when daemonizing (default 022).
相信做java的同学一看就比较明白了,很多参数和tomcat中是一样的,主要有一个host,port,socket需要讲解一下,host和port我们知道应该是成对出现的,那么socket是什么呢,其实他们都是socket,只不过,host+port模式是tcp sock,而socket是unix sock,他们都是套接字,一个是操作系统本地的,一个是网络套接字而已。
我的测试工具是apachbench,简称ab,在apache的bin目录中有这个工具。我的web服务器是lighttpd1.4。
我一共划分了4个场景,第一个场景是操作数据库的请求,第二个场景是请求缓存的场景,而且使用线程模型,第3和第4个场景都是fastcgi的进程模型。
场景一
涉及到查数据库的url,每次请求一条简单的sql语句。
python manage.py runfcgi method=threaded host=127.0.0.1 port=3033 daemonize=false
请求数 并发数 总时间
5000 50 22.86s 5000 25 23.37s 5000 10 23.37s 5000 100 21.58s
场景二
不涉及到数据的url,执行一段判断后返回(可以认为数据都放在缓存中)。
python manage.py runfcgi method=threaded host=127.0.0.1 port=3033
请求数 并发数 总时间
5000 50 7.734s
Concurrency Level: 50 Time taken for tests: 7.883 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5505084 bytes HTML transferred: 4685937 bytes Requests per second: 634.28 [#/sec] (mean) Time per request: 78.830 [ms] (mean) Time per request: 1.577 [ms] (mean, across all concurrent requests) Transfer rate: 681.98 [Kbytes/sec] received
5000 25 7.545s
Concurrency Level: 25 Time taken for tests: 7.859 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5504770 bytes HTML transferred: 4685000 bytes Requests per second: 636.20 [#/sec] (mean) Time per request: 39.296 [ms] (mean) Time per request: 1.572 [ms] (mean, across all concurrent requests) Transfer rate: 684.01 [Kbytes/sec] received
5000 10 7.481s
Concurrency Level: 10 Time taken for tests: 7.920 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5503153 bytes HTML transferred: 4685000 bytes Requests per second: 631.28 [#/sec] (mean) Time per request: 15.841 [ms] (mean) Time per request: 1.584 [ms] (mean, across all concurrent requests) Transfer rate: 678.52 [Kbytes/sec] received
5000 100 7.776s
Concurrency Level: 100 Time taken for tests: 7.776 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5504370 bytes HTML transferred: 4685937 bytes Requests per second: 643.04 [#/sec] (mean) Time per request: 155.511 [ms] (mean) Time per request: 1.555 [ms] (mean, across all concurrent requests) Transfer rate: 691.32 [Kbytes/sec] received
场景一和场景 二对比可以发现,带有数据操作的请求明显需要更多的时间,之间从缓存中拿数据,每秒中fastcgi可以处理1000个请求。
场景三
不涉及到数据的url,执行一段判断后返回(可以认为数据都放在缓存中)。使用进程模型。
python manage.py runfcgi method=prefork host=127.0.0.1 port=3033
请求数 并发数 总时间
5000 50 22 s
Concurrency Level: 50 Time taken for tests: 22.676 seconds Complete requests: 5000 Failed requests: 15 (Connect: 0, Receive: 0, Length: 15, Exceptions: 0) Write errors: 0 Non-2xx responses: 15 Total transferred: 5519788 bytes HTML transferred: 4676480 bytes Requests per second: 220.50 [#/sec] (mean) Time per request: 226.762 [ms] (mean) Time per request: 4.535 [ms] (mean, across all concurrent requests) Transfer rate: 237.71 [Kbytes/sec] received
5000 25 25 s
Concurrency Level: 25 Time taken for tests: 25.330 seconds Complete requests: 5000 Failed requests: 15 (Connect: 0, Receive: 0, Length: 15, Exceptions: 0) Write errors: 0 Non-2xx responses: 15 Total transferred: 5481652 bytes HTML transferred: 4676480 bytes Requests per second: 197.40 [#/sec] (mean) Time per request: 126.649 [ms] (mean) Time per request: 5.066 [ms] (mean, across all concurrent requests) Transfer rate: 211.34 [Kbytes/sec] received
5000 10 15 s
Concurrency Level: 10 Time taken for tests: 15.463 seconds Complete requests: 5000 Failed requests: 9 (Connect: 0, Receive: 0, Length: 9, Exceptions: 0) Write errors: 0 Non-2xx responses: 9 Total transferred: 5536528 bytes HTML transferred: 4679888 bytes Requests per second: 323.35 [#/sec] (mean) Time per request: 30.926 [ms] (mean) Time per request: 3.093 [ms] (mean, across all concurrent requests) Transfer rate: 349.66 [Kbytes/sec] received
5000 100 21 s
Concurrency Level: 100 Time taken for tests: 21.225 seconds Complete requests: 5000 Failed requests: 15 (Connect: 0, Receive: 0, Length: 15, Exceptions: 0) Write errors: 0 Non-2xx responses: 15 Total transferred: 5541355 bytes HTML transferred: 4676480 bytes Requests per second: 235.57 [#/sec] (mean) Time per request: 424.498 [ms] (mean) Time per request: 4.245 [ms] (mean, across all concurrent requests) Transfer rate: 254.96 [Kbytes/sec] received
通过场景二和三的对比,我们可以看出线程模型在默认情况下比进程模型更加快。不过根据操作系统的特性,ahuaxuan认为事有蹊跷。理论上来讲,在速度方面,进程模型不应该比线程模型慢,虽然网上有的文章确实有提到线程模型比进程模型快,不过ahuaxuan觉得他们的测试是有问题的。在研究了django的fastcgi参数之后,再根据做java的经验我发现问题可能出现在进程的创建上。于是调整参数,继续测试。
场景四
不涉及到数据的url,执行一段判断后返回(可以认为数据都放在缓存中)。将最大进程数和最小进程数调整到50。
python manage.py runfcgi method=prefork host=127.0.0.1 port=3033 daemonize=false minspare=50 maxspare=50
请求数 并发数 总时间
5000 100 8.16s
第一次:
Concurrency Level: 100 Time taken for tests: 9.682 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5557585 bytes HTML transferred: 4685000 bytes Requests per second: 516.42 [#/sec] (mean) Time per request: 193.642 [ms] (mean) Time per request: 1.936 [ms] (mean, across all concurrent requests) Transfer rate: 560.55 [Kbytes/sec] received
第二次
Concurrency Level: 100 Time taken for tests: 5.134 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5560000 bytes HTML transferred: 4685000 bytes Requests per second: 973.84 [#/sec] (mean) Time per request: 102.686 [ms] (mean) Time per request: 1.027 [ms] (mean, across all concurrent requests) Transfer rate: 1057.53 [Kbytes/sec] received
分析,一模一样的两次请求,为什么差两倍的速度呢,根据ahuaxuan的分析,问题应该出在进程的创建上,第二次测试,由于进程已经存在,所以速度非常的快,比线程模型快了2倍不到一点。
5000 25 8.90s
Concurrency Level: 25 Time taken for tests: 5.347 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5559748 bytes HTML transferred: 4685000 bytes Requests per second: 935.07 [#/sec] (mean) Time per request: 26.736 [ms] (mean) Time per request: 1.069 [ms] (mean, across all concurrent requests) Transfer rate: 1015.38 [Kbytes/sec] received
5000 10 8.78s
Concurrency Level: 10 Time taken for tests: 5.723 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5562916 bytes HTML transferred: 4687811 bytes Requests per second: 873.64 [#/sec] (mean) Time per request: 11.446 [ms] (mean) Time per request: 1.145 [ms] (mean, across all concurrent requests) Transfer rate: 949.22 [Kbytes/sec] received
5000 50 7.90s
Concurrency Level: 50 Time taken for tests: 5.239 seconds Complete requests: 5000 Failed requests: 0 Write errors: 0 Total transferred: 5560923 bytes HTML transferred: 4685937 bytes Requests per second: 954.43 [#/sec] (mean) Time per request: 52.387 [ms] (mean) Time per request: 1.048 [ms] (mean, across all concurrent requests) Transfer rate: 1036.63 [Kbytes/sec] received
对比场景三和场景四发现,在进程模式下在没有指定maxspare和minspare值的情况下,由于每次并发大的时候都动态的去创建进程,效率明显下降,5000个请求居然需要20s之多。而一旦设置了maxspare和minspare之后,只有第一次请求的时候,需要创建进程,之后经常已经存在,不需要创建,也不需要动态的消亡(maxspare和minspare值太小会导致fastcgi父进程频繁的创建和销毁子进程,非常的消耗cpu),整个应用程序的处理能力大大提高。
再对比场景二和场景四,可以发现不管是进程模式还是线程模式,每秒都能处理超过1000次的请求。而且在并发较大的情况下,进程模式效率更高。由此可见在网站访问量巨大的情况下,使用进程模型才是比较好的选择,而不是网上所说的使用线程模型。
后来为了作对比,ahuaxuan在线程模型上也加了maxspare=50,minspare=50,不过性能和没有加几乎一样,可见,这两个参数对进程模型的影响比较大。而且也可以进一步说明操作系统创建进程消耗确实大。
从这个对比结果,我们还可以得知:
1线程创建在ubuntu中的代价比进程小的多。(根据观察,在创建进程的时候,cpu上升到100%,而线程模型的cpu只有80%的样子)
2在进程已经存在的情况下,处理请求的能力,进程要比线程能力强。而且要强出1/3左右的样子
最后,贴出我的机器配置
cpu:t8100
内存:2g
硬盘:5400转的希捷
希望本文能够给对django性能有怀疑,以及对fastcgi下认为线程模型更快的同学有所帮助。
1 楼 abu 2010-08-13 18:03